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Introduction 
The research contributions presented in this document focus on (1) allocation of 
operational costs among firms involved in Industrial Symbiotic Relations (ISRs) and (2) 
incentive allocation to enable fair and stable implementation of Industrial Symbiotic 
Networks (ISNs). We model such relations as cooperative games and show the 
implementability in (one-to-one) ISRs. Then, for (many-to-many) ISNs, we show the cases 
in which monetary incentives are required and provide a practical multi-agent 
framework for incentive allocations—that guarantee the implementability of ISNs in a 
fair and stable manner.   

The papers that address these issues and in general, our approach for modeling ISRs and 
implementing ISNs are:  

1. Yazdanpanah, V., & Yazan, D.M. Industrial Symbiotic Relations as Cooperative 
Games. In Proceedings of the 7th International Conference on Industrial 
Engineering and Systems Management (IESM-2017), 11-13 October 2017, 
Saarbrucken (Germany) [to be submitted to International Journal of Production 
Research]. 

2. Yazdanpanah, V.,  Yazan, D.M., & Zijm H. Industrial Symbiotic Networks and 
Coordinated Games. In Proceedings of the the 17th International Conference on 
Autonomous Agents and MultiAgent Systems (AAMAS-2018), 10-15 July 2018, 
Stockholm (Sweden) [to be submitted to International Journal of Computational 
Intelligence]. 

In the first paper, we introduce a game-theoretical formulation for Industrial Symbiotic 
Relation (ISRs) and provide a formal framework to model, verify, and support 
collaboration decisions in this new class of two-person operational games. ISR games are 
formalized as cooperative cost-allocation games with the aim to allocate the total ISR-
related operational cost to involved industrial firms in a fair and stable manner—by 
taking into account their contribution to the total traditional ISR-related cost. We tailor 
two types of allocation mechanisms using which firms can implement cost allocations 
that result in a collaboration that satisfies the fairness and stability properties. Moreover, 
while industries receive a particular ISR proposal, our introduced methodology is 
applicable as a managerial decision support to systematically verify the quality of the ISR 
in question.  

In the second paper, we present an approach for implementing a specific form of 
collaborative industrial practices—called Industrial Symbiotic Networks (ISNs)—as MC-
Net cooperative games and address the so called ISN implementation problem. This is, 
the characteristics of ISNs may lead to inapplicability of fair and stable benefit allocation 
methods even if the collaboration is a collectively desired one. Inspired by realistic ISN 
scenarios and the literature on normative multi-agent systems, we consider regulations 
and normative socioeconomic policies as two elements that in combination with ISN 
games resolve the situation and result in the concept of coordinated ISNs. 
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Abstract—In this paper, we introduce a game-theoretical
formulation for a specific form of collaborative industrial relations
called “Industrial Symbiotic Relation (ISR) games” and provide
a formal framework to model, verify, and support collaboration
decisions in this new class of two-person operational games.
ISR games are formalized as cooperative cost-allocation games
with the aim to allocate the total ISR-related operational cost
to involved industrial firms in a fair and stable manner by
taking into account their contribution to the total traditional
ISR-related cost. We tailor two types of allocation mechanisms
using which firms can implement cost allocations that result in
a collaboration that satisfies the fairness and stability properties.
Moreover, while industries receive a particular ISR proposal, our
introduced methodology is applicable as a managerial decision
support to systematically verify the quality of the ISR in question.
This is achievable by analyzing if the implemented allocation
mechanism is a stable/fair allocation.

I. INTRODUCTION

The multi-dimensional concept of Industrial Symbiosis
focuses on analysis, design, and operation of collaborative re-
lations between traditionally disjoint industrial enterprises with
the aim of keeping reusable resources, e.g., recyclable material
or waste energy, in their (loosely connected) value chains [1–
3]. As Industrial Symbiotic Relations (ISRs) aim at the lowest
possible discharge of resources, they can be considered as a
tool for implementing the concept of circular economy [4] in
the context of industrial relations. Moreover, ISRs are closely
related to Industry 4.0 paradigm and practice of Collaborative
Networked Organizations as they all are concerned about the
necessity for interrelation between traditionally disconnected
industrial firms [5, 6]. Reviewing industrial symbiosis litera-
ture, we encounter recent contributions focused on different
aspects of this concept. In [3], they present the concept of
perfect industrial symbiosis and verify the quality of any given
ISR by measuring its distance to such a perfect form. Intro-
duced method in [7] focuses on efficiency measuring while
[8] studies dynamics of profits in ISRs. Despite contributions
that discuss static (multi-criteria) decision analysis in industrial
symbiosis (see [9]), one aspect of ISRs that we believe requires
more attention is dynamic decision analysis. In our view, while
we shift from ISR in theory to ISR in practice, two missed
elements are 1) applicable decision analysis methods and 2)
practical decision support tools that are aware of dynamic
operational aspects of ISRs, e.g., methods for analyzing and
mechanisms for designing fair and stable collaborations. This
asks for formal frameworks tailored to model, verify, and sup-
port such decisions (i.e., decision process modeling, decisions
verification methods, and decision support tools). In a general
view, decisions in ISRs can be categorized in two classes,
selection decisions and collaboration decisions. The former is
about choosing among firms and learning about potential ISRs

(exploration) while the latter is about getting engaged in (or
rejecting) a particular ISR proposal (exploitation). To deal with
these two operational decision problems, the mature field of
of cooperative game theory [10] and more specifically subfield
of Operations Research (OR) games [11] provide vigorous
analytical methods and design mechanisms.

In this work, we aim to fill the gap by tailoring analytical
tools based on game-theoretical solution concepts to support
the second form of decisions, i.e., collaboration decisions, in
ISRs. For this purpose, we represent ISRs as market games and
model them as cooperative cost-allocation games (see [12, 13]).
Accordingly, the focus is on operational aspects of ISRs,
analysis of collaboration decisions in ISRs, and tailoring cost-
allocation mechanisms that respect the operation of ISRs. Note
that in this work we analyze collaboration decisions in bilateral
industrial symbiotic relations as the nuclear building blocks
for various industrial symbiotic topologies, e.g., Industrial
Symbiotic Networks (ISNs) [14].

The paper is structured as follows. In Section II we provide
a conceptual analysis of ISRs from an operational point of
view. Section III presents the game-theoretical preliminaries
and our proposed class of ISR games. In Sections IV we
introduce the two tailored solution concepts for allocation of
costs in ISRs. Using these notions, firms can reason about
stability and fairness of any given ISR. Finally, concluding
remarks and future work directions are presented in Section
V.

II. CONCEPTUAL ANALYSIS

To discuss the intuition behind our proposed operational
semantics for the game-theoretical formulation of Industrial
Symbiotic Relations (ISRs) and to elaborate nuances of col-
laboration decisions in ISRs, we present the following running
example. Imagine a glass manufacturer firm A and a ceramics
manufacturer firm B. Firm A produces glass powder as its
excess resource r that (after recycling) can be substituted with
i, the primary input of B for its production processes (Figure
1).

A B
Traditional
i-Supplier

r-Discharge
Area

r (to substitute i)r i

Fig. 1. Schematic industrial symbiotic relation between (glass manufacturer)
firm A and (ceramics manufacturer) firm B on resource r (glass powder).

A. Collaboration Decision and Cost-Allocation

In our ISR example, having the potential to form a sym-
biotic relation over r may enable both A and B to reduce
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the costs affiliated with discharging excess r (7 units of util1)
and purchasing i (11 units of util), respectively. However,
establishing such a collaboration has its corresponding oper-
ational costs, e.g., costs of transportation and recycling (15
units of util). Intuitively, such an ISR would be feasible if
total traditional costs in case of non-cooperation (7 + 11 utils)
be more than total operational costs in case of cooperation
(15 utils). Such a feasibility condition is necessary but not
sufficient for firms to collaborate. One main question is about
the method(s) to allocate the operational costs of collaboration
such that the contribution of each party will be respected.
Should both firms A and B equally pay (7.5 utils) or should
firm B pay more as it is enjoying more cost reduction
thanks to the collaboration? Although the collaboration may
reduce the total cost, how to allocate the total cost of ISR
operationalization will be at stake. This relates the practice of
ISRs to the concept of coopetition [15] in which the players
are interested in cooperation but also compete to gain as much
as possible out of the benefits created by such a cooperation.
Accordingly, studying if an ISR is a stable and fair relation
calls for methods to analyze and mechanisms to guarantee its
performance in the operationalization stage.

B. Dynamics of ISR-Related Costs

Following [16], we deem that economic profitability can
be seen as the main driver for industries to get involved in a
potential ISR (collaboration decision). In brief, for firms with
the potential to establish an ISR, it is reasonable to compare
the total cost of ISR-operationalization with their current ISR-
related costs, e.g., excess-resource discharge costs. Note that
we circumscribe our focus on costs that can be reduced or
costs that will be introduced, in case of ISR materialization
and not the costs that remain uninfluenced, e.g., costs related
to processes that are independent of the ISR in question. In the
following, we provide a brief cost analysis for firms on both
sides of a potential ISR. This results in two classes of ISR-
related operational and traditional costs. The former refers to
costs involved in the process of ISR operationalization while
the latter is about traditional costs that firms should take into
account if they do not implement the ISR.

In our example, firm B should traditionally purchase i from
its i-supplier(s) and firm A has to pay the cost of discharging r.
We call the former, traditional purchasing cost and the latter,
traditional discharge cost. On the other hand, the three main
ISR-related operational costs are Treatment, Transportation,
and Transaction costs [17, 18]. Treatment Cost: When a re-
source based on which an ISR can be established, e.g., glass
powder, is out of a production process, it needs to be treated.
Depending on the resource type, treatment processes may
include sorting, dismantling, liquefaction, etc. [19, 20]. Based
on the set of treatment processes required to make the resource
usable for the resource-receiver side of an ISR, the imple-
mentation of waste treatment facility may change. In general,
the treatment process results in a total treatment cost for any
particular ISR. Transportation Cost: Resource transportation
can be done via land vehicles, sea freights, or even combined
transportation modes (see [21]) with respect to the resource
type and geographical boundaries. Moreover, potential partners

1A util can be any sort of transferable utility, e.g., say that each util is one
thousand Euros.

may decide to invest in implementation of new infrastructures,
e.g., a pipeline system, and paying the investment cost for this.
In this work, we abstract from such subtleties in decision-
making for the mode of transportation and assume a standard
total transportation cost for a given ISR. Transaction Cost:
The role of transaction costs in establishment of ISRs is
studied in the industrial symbiosis literature, e.g., in [22, 23].
According to [24, 25], transaction costs include the costs of
market research, contracting negotiations, coordination, and
adapting to the use of non-traditional resources, e.g., wastes.
As discussed, the former two operational costs are very much
dependent on the resource type while the transaction cost
merely depends on the administrative aspects of the ISR.
As we are focused on industrial symbiotic relations (and not
networks), we take into account a single value for transaction
cost for a given ISR.

In this work, we consider the two classes of ISR-related
operational and traditional costs as the main quantitative pa-
rameters for our game-theoretical formalization of ISRs. This
is to tailor mechanisms for allocation of ISR-related opera-
tional costs based on the contribution of the involved firms
to ISR-related traditional costs. For notational convenience,
while discussing about a given industrial symbiotic relation σ
between two arbitrary firms A and B, we denote the total σ-
related traditional costs for the firm i ∈ {A,B} with Ti(σ̄)
and refer to total σ-related operational costs as T (σ). So, the
aim is to allocate T (σ) to both A and B in a stable and fair
manner by taking into account TA(σ̄) and TB(σ̄). We later
discuss about and distinguish between stability and fairness of
cost-allocations in ISRs.

C. Game-Theoretical Cost-Allocation Mechanisms

As we discussed in Section II-A, allocation mechanisms
can play a key role in the process of ISR operationalization
since a fair allocation of operational costs can foster the collab-
oration. For developing such practical allocation mechanisms,
cooperative game theory [10] and Operation Research (OR)
games [11] provide theoretical solution concepts to allocate
costs to involved players in market games. Notions such
as core of the game and Shapley value guarantee desired
properties such that it is reasonable for firms not to deviate
from cooperation [10]. In the following, we briefly analyze
properties of these two types of game-theoretical solution
concepts as two notions that we aim to tailor for allocation
of the total operational cost in ISRs.

We first discuss the concept of core of the game as the
set of all cost-allocations that (1) allocate a cost to each
player lower than their traditional cost and (2) guarantee that
the total allocated cost is equal to the total operational cost.
In our ISR example, the total ISR-related operational cost
is 15 utils while firms A and B had to traditionally pay 7
and 11 utils, respectively. In this case, cooperation results
in total cost reduction by 3 utils. However, cooperating will
be rational for each player, only if they individually pay
less than what they had to pay traditionally. When a cost-
allocation mechanism satisfies this, it regards the so called
individual rationality (INR) property [13]. On the other hand,
the summation of allocated costs to players should be equal
to the total operational cost. Mechanisms that satisfy this
property, are called efficient (EFF) cost-allocations. The set
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of cost allocations that satisfy both INR and EFF form
the core of the game [10]. The second game-theoretic notion
for allocation of costs, is the concept of Shapley value [26]
as the unique efficient (EFF) mechanism for allocation of a
cost among players such that (1) symmetric players pay the
same costs, (2) players that their presence in the cooperation
results in no cost reduction (referred as dummy players)
pay their traditional costs, and (3) if players get involved
in another game, the total allocated costs to each player in
these two games, can be simply added. These three properties
respectively referred to symmetry (SYM), dummy/null player
(DUM), and additivity (ADD) properties in the cooperative
game theory literature [10]. Note that Shapley value is the
unique mechanism that allocates a cost value to each player
such that all EFF , SYM , DUM , and ADD are satisfied.

III. INDUSTRIAL SYMBIOTIC RELATIONS AS GAMES

Dynamics of costs and cost-saving values that result from
collaboration in market games are often modeled by coopera-
tive games with Transferable Utility (TU) games [10, 12]. Such
games specify all the possible collaborative agent groups and
represent the corresponding cost values. This formal represen-
tation enables reasoning about cost-saving as a quantitative
outcome of cooperation among agents.

Definition 1 (Cooperative TU Games). [10] A cooperative
cost-allocation game with transferable utility (a TU game) is
a tuple (N, c) where N = {a1, a2, . . . , an} is the finite set of
agents and c : 2N 7→ R≥0 is a characteristic cost function that
associates a real number c(S) with each subset S ⊆ N . By
convention, we always assume that c(∅) = 0.

In the following definition, we recall two properties that
axiomatize the behavior of the cost function in response to
structural relations between agent groups.

Definition 2 (Subadditive and Submodular Games). [10]
Let G = (N, c) be a cost-allocation TU game. We say G
is subadditive iff c(S) + c(T ) ≥ c(S ∪ T ) for all disjoint
agent groups S and T in N (i.e., S, T ⊆ N and S ∩ T = ∅).
Moreover, we say G is submodular iff c(S) + c(T ) ≥ c(S ∪
T ) + c(S ∩ T ) for all agent groups S and T in N (i.e.,
S, T ⊆ N ).

Roughly speaking, in subadditive games, agents have ra-
tional incentives to cooperate because the total cost will be
higher in case of no-cooperation. In most applications, cost-
allocation games are usually subadditive. Desirable properties
of submodular games (also referred as concave games) will
be elaborated while we focus on cost allocation mechanisms
for TU games (in Section IV).

With respect to our scope of application, i.e., bilateral
symbiotic relations between industrial agents, we focus on
two-person TU games and formalize our Industrial Symbiotic
Relation (ISR) games as such. Moreover, following our pre-
sented analysis in Section II-A about the feasibility of ISRs (in
case they result in the reduction of the total cost), we assume
subadditivity as it corresponds to the nature of our application
context.

Definition 3 (ISR Games). Let σ be an ISR between firms
A and B. Moreover, let T (σ) and Ti(σ̄) respectively represent

the total σ-related operational cost and the total σ-related
traditional costs for i ∈ {A,B}. We say σ-based ISR cost
allocation game (ISR game σ) between firms A and B is a
subadditive cooperative TU-game (N, c) where N = {A,B},
c(N) = T (σ), c(∅) = 0, and c({i}) = Ti(σ̄) for i ∈ N .

According to Definition 3, the cost function of ISR games
characterizes industrial symbiotic relations by associating to
each singleton group {i}2, the total cost that they will face
(individually) in case of no-cooperation. Moreover, it ascribes
the total ISR-related operational cost to the two member group
N as the amount that members of N have to pay (collectively)
in case of cooperation. In addition, the assumed subadditivity
of ISR games reflects the feasibility of ISRs, i.e., in ISR
games we have that T (σ) ≤

∑
i∈N

Ti(σ̄). So, regardless of

the mechanisms for the allocation of ISR-related operational
costs, the total amount to be paid in case of cooperation is at
most equal to the sum of the amounts to be paid individually.
The following property shows that in general, ISR games are
submodular regardless of their particular settings. We later
discuss that such a property results in applicability of a large
class of game-theoretical cost allocation mechanisms, i.e.,
mechanisms that are based on the concept of core of the game.

Proposition 1 (Submodularity of ISR Games). Let σ be an
arbitrary ISR game. It always holds that σ is submodular.

Proof: According to Definition 2, a game is submodular
iff the c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ) inequality holds
for all possible agent groups S and T in N . In ISR games,
by checking the validity of this inequality for all 6 possible
combinations of agent groups (for S and T ), the claim will
be proved. For S = ∅, we have the following valid inequality
c(∅)+c(T ) ≥ c(∅∪T = T )+c(∅). For S = N , the inequality
can be reformulated in the following form that always holds
c(N)+c(T ) ≥ c(N ∪T = N)+c(N ∩T = T ). Finally, when
S and T are equal to the only two possible disjoint groups,
we have the following inequality c(S) + c(T ) ≥ c(N) + c(∅).
This inequality always holds thanks to the subadditivity of ISR
games.

Note that submodularity is not a general property of
subadditive cooperative games but holds for the class of ISR
games. In the following, we recall our ISR scenario between
the glass manufacturer firm A and the ceramics manufacturer
firm B, and describe the game-theoretical formulation of this
scenario.

Example 1 (ISR Scenario as a Game). In the ISR scenario
from section II, we assume that the amount of recycled excess
r in A completely substitutes the required amount of i in B.
Hence, in case the firms operationalize this symbiotic relation,
neither of the firms has to deal with associated traditional costs
for discharging excess r and purchasing required i. This ISR
scenario can be modeled as cooperative game σ = (N, c)
where N = {A,B}, c(A) = 7, c(B) = 11, c(∅) = 0, and
c(N) = 15. This game is both subadditive and submodu-
lar. To check subadditivity, we survey all possible couples
of agent groups in N . The only two disjoint agent groups
are {A} and {B} for which the cost of the union group

2In further references, whenever it is clear from the context that we are
referring to a singleton group {i} ⊂ N , we use i instead of {i}.
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(c({A,B}) = c(N) = 15) is lower than the summation of
the individual costs (c({A}) + c({B}) = 18). Thus, the game
σ is subadditive. For submodularity, we can rely on Proposition
1.

IV. ALLOCATION MECHANISMS AND DECISION SUPPORT

Having Industrial Symbiotic Relations (ISRs) modeled as
cooperative games (ISR games), one decision that firms are
faced with is either “to get engaged in” or “to reject” a
potential ISR. This is mainly to determine the collaboration
decision (as discussed in Section II-A). Following rational
decision-making perspectives presented in [27, page. 210-211],
we deem that to support the collaboration decision in ISRs,
analyzing two key aspects of collaborations, namely stability
and fairness, results in practical decision support tools for
ISRs. In other words, “goodness” of a collaboration can be
characterized and validated by checking if it is stable, fair,
or both. In the following, we introduce two methods from
game-theoretical literature that axiomatize the stability and
fairness properties. These methods formulate both the stability
and fairness of collaborations with respect to distribution of
the value that agents can gain thanks to the collaboration.
Accordingly, tailoring these mechanisms for ISR games leads
to tools for supporting the collaboration decision in industrial
symbiotic relations. In this case, the way that industrial agents
allocate the total ISR-related operational cost specifies the
stability and fairness of the ISR.

A. Core Allocations for ISR Games

Core-based mechanisms in cooperative games are mainly
concerned about stability of possible collaborations [10]. In
relation to cost allocation in games, a collaboration is stable
iff (1) the summation of allocated costs to individual agents
in a collaborative group is equal to the total cost that the
group should pay (efficiency) and (2) the allocated costs to
individuals is at most equal to their costs in case they defect
from the collaborative group (rationality). It is observable that
if the agent groups follow a cost allocation method that does
not satisfy the two above properties, they end in an unstable
situation either due to inefficient distribution of costs or as the
result of (rational) agents leaving the group. In the following,
we define our core-based cost allocation mechanism for ISR
games and describe its properties.

Definition 4 (Core Allocations for ISRs). Let σ be an ISR
game (as defined in Definition 3) between firms A and B.
The core of σ is the set Ψ(σ) := {〈TΨ

A (σ), TΨ
B (σ)〉} such

that for i ∈ {A,B} we have that (1) TΨ
i (σ) ∈ R≥0 (non-

negative valued), (2)
∑

i∈{A,B}
TΨ
i (σ) = T (σ) (efficient), and

(3) TΨ
i (σ) ≤ Ti(σ̄) (individually rational).

Following the discussion about stability of collaborations,
an ISR σ is stable with respect to the allocation of its
operationalization costs, if it implements a cost allocation that
belongs to the core of σ. Thus, the presented core allocation
for ISRs can be applied as (1) a mechanism for guaranteeing
the stability of an ISR (ISR design) and (2) as a verification
method to analyze if an ISR is stable (ISR assessment). The
set of core allocations for a given ISR, construct a segment
representable in two-dimensional space (see Figure 2). Due

TA(σ)

TB(σ)

T (σ)

T (σ)

α

γ
β

TB(σ̄)

UA(σ) TA(σ̄)

UB(σ)

{〈TΨ
A (σ), TΨ

B (σ)〉}

Fig. 2. Schematic core and Shapley allocations for ISR game σ: In this
diagram, allocated costs to firms A and B are illustrated on the horizontal
and vertical axes, respectively. Moreover, UA(σ) = T (σ)−TB(σ̄), UB(σ) =
T (σ)− TA(σ̄), and γ represents the Shapley allocation of the game Φ(σ).

to the linear formulation of ISRs’ core, computing the set of
stable allocations is not computationally expensive and can be
computed applying linear programming techniques to solve a
two-variable system of inequalities [28].

Two main concerns with respect to applicability of the
concept of core are about its existence and fairness. In other
words, is the set of core allocations a nonempty one and does
it always provide a fair distribution of costs among involved
firms in an ISR game? In the following, we first illustrate that
ISR games have a nonempty core and core allocations cannot
guarantee the fairness property. This motivates the introduction
of a fair cost allocation mechanism, i.e., a Shapley-based
allocation mechanism for ISR games.

Proposition 2 (Existence Property of Core of ISR Games).
Let Ψ(σ) be the core of ISR game σ between firms A and B.
It always holds that Ψ(σ) 6= ∅.

Proof: According to the Bondareva-Shapley theorem (as
described in [10]), submodular games have a nonempty core.
We already proved in Proposition 1 that ISR games are
submodular. Hence, we have that for any ISR game σ, the
core is not empty.

Note that the concept of core of the game, provides a set
of allocations that guarantee the stability of the collaboration.
Having a range of stable cost distributions is appropriate for
ISR scenarios in which firms are allowed to practice their
bargaining power (see [29]) in the negotiation process in
order to pay the smallest possible share of the ISR-related
operational costs. E.g., as illustrated in Figure 2, the most
desirable (albeit stable) allocation form for firms A and B
occurs in points α and β, respectively. For instance in α,
firm A enjoys paying the lowest stable share of the total ISR-
related operational cost while B is paying the highest. In this
case, B suffers because of this intuitively unfair allocation
and pays equal to its total traditional cost. This shows that the
concept of core provides a method to verify the stability of an
ISR and can be applied as a tool to support the collaboration
decision in ISRs, i.e., accepting an out of core cost-distribution
results in an unstable ISR. Nevertheless, it does not grasp the
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fairness and neither provides a method for choosing a specific
cost allocation to implement among the set of stable cost
allocations. In the following, we tailor a solution concept that
axiomatize the concept of fairness and provides a single-point
allocation that satisfies the fairness property.

B. Shapley Allocation for ISR Games

Regarding the allocation of costs in collaborative groups,
there exist various interpretations of the complex notion of
fairness (see [30]). In cooperative game theory, the well-
established concept of Shapley value [26] is a central concept
that regards the fairness of a cost distribution among members
of a collaborative agent group by taking into account their
contributions to the collaborative group. In this work, we
follow Shapley’s view and expect a fair allocation to satisfy the
following four properties: efficiency, symmetry, dummy player,
and additivity (as discussed in Section II-C). In brief, if a
group G follows an efficient method to allocate cost C among
its members, the summation of allocated costs to members of
group G will be equal to C. The symmetry property says that
agents that make the same contribution to the total cost, should
be allocated the same individual cost shares. The dummy player
property says that if the presence of an agent A does not
result in any cost reduction (in all the possible agent groups),
the allocated cost to A should be equal to its individual total
traditional cost. Finally, the additivity property says that if you
combine two games V and U , the allocated cost to an agent
A (involved in both the games) should be the sum of the costs
allocated to A in the individual games, i.e., playing more than
once does not lead to any (dis)advantages for A. For formal
axiomatization of these properties, we refer the reader to [26].
In the following, we present our tailored Shapley value for ISR
games.

Definition 5 (Shapley Allocation for ISRs). Let σ be an
ISR game (as defined in Definition 3) between firms A
and B. The Shapley allocation for σ is the tuple Φ(σ) :=
〈TΦ

A (σ), TΦ
B (σ)〉 where for i ∈ N = {A,B} we have

TΦ
i (σ) = 1

2 [T (σ) + Ti(σ̄)− TN\{i}(σ̄)].

A reader familiar with the notion of Shapley value might
expect the two notions of orders and marginal contributions
to be a part of our tailored concept of Shapley value for
ISRs. We highlight that due to our domain of application, i.e,
bilateral industrial relations, there are two possible orders in
ISR games (reflected by the constant value 1

2 ). Moreover, the
marginal contribution of a given firm i ∈ N = {A,B} can be
reformulated in terms of the most desirable stable cost for i and
the most undesirable one, i.e., Ui(σ) = T (σ)−TN\{i}(σ̄) and
Ti(σ̄), respectively. Note that as the Shapley value is defined
following a constructive method (in contrast to condition-based
definition of core in Definition 4), the existence of the Shapley
value for any arbitrary ISR game is guaranteed. Following
our discussion about the fairness of collaborations, the next
property shows that the Shapley value is the unique fair method
for allocation of the total ISR-related operational cost in ISR
games.

Proposition 3 (Uniqueness of the Shapley Value). Let
Φ(σ) be the Shapley allocation for ISR game σ between firms
A and B. For any fair allocation of costs in σ, denoted by
Φ′(σ), we have that Φ′(σ) = Φ(σ).

Proof: Importing results from [26], we have that for any
cooperative game, the Shapley value is the unique allocation
method that satisfies all the four properties of fair cost alloca-
tions, i.e., efficiency, symmetry, dummy player, and additivity,
regardless of the characteristics of the cost function of the
game. Accordingly, the uniqueness property holds for ISR
games as two-person cost allocation games.

Considering core of ISR games and their unique Shapley
allocation, the following proposition relates these two forms
of solution concepts and shows that in ISR games the Shapley
allocation is in the core.

Proposition 4 (Membership in the Core). Let Ψ(σ) and
Φ(σ) be respectively the set of core allocations, and the
Shapley allocation for ISR game σ between firms A and B. It
always holds that Φ(σ) ∈ Ψ(σ).

Proof: Based on [13, 26], the core of submodular games
is nonempty and includes the Shapley value. For ISR games,
according to Proposition 2, the core is nonempty. Thus, we
have that for any ISR game σ, it holds that Φ(σ) ∈ Ψ(σ).

Note that the membership of the Shapley allocation in the
core is a property of ISR games and not a general property
of the Shapley cost allocation for any class of cooperative
games. Accordingly, we have that the Shapley allocation of
any ISR game can be illustrated in two dimensional space.
More precisely, the Shapley allocation γ (see Figure 2) is the
midpoint of the core allocation segment.

Example 2 (Allocations in the ISR Scenario). Considering
the presented scenario in Example 1, any cost allocation
〈TA, TB〉 such that 4 ≤ TA ≤ 7 and 8 ≤ TB ≤ 11 and
TA + TB = 15 is a core allocation. Moreover, 〈5.5, 9.5〉 is
the Shapley allocation.

In general, Shapley allocation does not satisfy the individ-
ual rationality property. I.e., it might be the case that some
agents in a collaborative group should pay higher than their
traditional cost in order to guarantee the fairness property.
In such cases, we have a fair albeit unstable collaboration
because any sacrificing firm has incentive to rationally defect
the collaboration. However, the next proposition shows that for
ISR games, the Shapley allocation is individually rational.

Proposition 5 (Fairness and Stability). Let Φ(σ) be the
Shapley allocation for ISR game σ between firms A and
B. It always holds that for i ∈ {A,B}, we have that
TΦ
i (σ) ≤ Ti(σ̄).

Proof: According to Proposition 4, the Shapley allocation
of ISR game σ is also a core allocation. Hence, it also satisfies
the individual rationality condition in Definition 4.

Based on proposition 5, in case the two firms agree to
implement the Shapley allocation, it is guaranteed that the
relation will be both fair and stable. Although implementing
the Shapley allocation seems natural due to its desirable prop-
erties, firms may prefer to negotiate among cost allocations
in the core with the aim to practice their bargaining power
and enjoy more cost reduction. However, industrial agents that
suffer from unfair allocations in such cases may defect the
collaboration, leave/reject the ISR, and join other ISRs that
are practicing fair allocation methods.
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V. CONCLUSIONS AND FUTURE WORK

In this work, we present a game-theoretical representation
of Industrial Symbiotic Relations (ISRs) and tailor two types
of solution concepts for cost allocation in such relations, i.e.,
core allocation and Shapley allocation for ISR games. These
two notions can also be seen as two approaches for decision
support while firms are faced with the collaboration decision,
to reject or accept an ISR proposal. This is by enabling firms
to systematically reason about and verify stability and fairness
of a particular ISR. Range of stable collaborations, provided
by the concept of core, allows further negotiation while the
Shapley allocation leads to a uniquely fair solution. We then
show that due to the characteristics of industrial symbiotic
relations, ISR games can always be operationalized in both a
fair and stable manner. In addition to practical contributions
by providing managerial decision support tools, we introduced
ISR games as a new class of two-person Operations Research
(OR) games. In ISR games, we have the non-emptiness of the
core and it is guaranteed that the Shapley value in this class
of OR games is an individually rational solution. As a future
work, we aim to analyze the validity of presented results using
multiagent-based simulations [31]. We also plan to extend our
game-theoretical analysis to network level, relate our notions
to the concept of willingness to cooperate [32], and study
Industrial Symbiotic Networks (ISNs). Due to complexities
of ISNs (see [14]) guaranteeing fairness and stability in such
networks calls for mechanisms to coordinate agent interactions
[33] and governance platforms for, as discussed in [34],
“administration of stakeholders by stakeholders”.
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Industrial Symbiotic Networks as Coordinated Games

ABSTRACT
We present a framework for implementing a specific form of collab-

orative industrial practices called “Industrial Symbiotic Networks

(ISNs)” as cooperative games. The game-theoretic formulation of

ISNs enables systematic reasoning about what we call the ISN im-

plementation problem. Specifically, the characteristics of ISNs may

lead to inapplicability of fair and stable benefit allocation meth-

ods even if the collaboration is a collectively desired one (from

a socioeconomic and environmental point of view). Inspired by

realistic ISN scenarios and following the literature on normative

multi-agent systems, we consider regulations and normative socioe-

conomic policies as two elements that in combination with ISN
games resolve the situation and result in the introduction of the

novel concept of “Coordinated ISNs (C−ISNs)". Applied regulations

are mainly monetary incentive allocation rules to enforce desired

industrial collaborations with respect to an established policy. In

our framework, employing Marginal Contribution Nets (MC-Nets)

as rule-based cooperative game representations fosters the combi-

nation of regulations and ISN games with no loss in expressiveness.

We develop algorithmic methods for generating regulations that

ensure the implementability of ISNs and as a policy support, show

the policy requirements that ensure the implementability of all the

desired ISNs in a balanced-budget way.

KEYWORDS
Game Theory for Practical Applications; Industrial Symbiosis; MC-

Net Cooperative Games; Normative Coordination; Policy and Reg-

ulation.

1 INTRODUCTION
Industrial Symbiotic Networks (ISNs) are mainly seen as collabora-

tive networks of industries with the aim to reduce the use of virgin

resources by circulating reusable resources (e.g, physical waste ma-

terial and energy) among the network members [6, 19, 27]. In such

networks, symbiosis leads to socioeconomic and environmental

benefits for involved industrial agents and the society. One barrier

against stable ISN implementations is the lack of frameworks able

to secure such networks against unfair and unstable allocation of

obtainable benefits among the involved industrial firms. In other

words, although in general ISNs result in the reduction of the total

cost, a remaining challenge for operationalization of ISNs is to tai-

lor reasonable mechanisms for allocating the total obtainable cost

reductions (in a fair and stable manner) among the contributing

firms. Otherwise, even if economic benefits are foreseeable, lack

of stability and/or fairness may lead to no-cooperation decisions.

This will be the main focus of what we call the ISN implementation
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problem. Reviewing recent contributions in the field of industrial

symbiosis research, we encounter studies focusing on the necessity

to consider interrelations between industrial enterprises [27] and

the role of contract settings in the process of ISN implementation

[1]. We believe that a missed element for shifting from theoretical
ISN design to practical ISN implementation is to model, reason

about, and support ISN decision processes in a dynamic way (and

not by using snapshot-based modeling frameworks).

The mature field of cooperative game theory and Operations Re-

search (OR) games provides rigorous methodologies and established

solution concepts, e.g. the core of the game and the Shapley alloca-

tion [5, 9, 20, 23]. However, for ISNs modeled as a cooperative game,

these established solution concepts may be either non-feasible (due

to properties of the game, e.g. being unbalanced) or non-applicable
(due to properties that the industrial domain asks for but solu-

tion concepts cannot ensure, e.g. individual as well as collective

rationality). This calls for contextualized solutions that take into

account both the complexities of ISNs and the characteristics of

the employable game-theoretical solution concepts. Accordingly,

inspired by realistic ISN scenarios and following the literature on

normative multi-agent systems [3, 12, 26], we consider regulative
rules and normative socioeconomic policies as two elements that

in combination with ISN games result in the introduction of the

novel concept of Coordinated ISNs (C−ISNs). We formally present

regulations as monetary incentives rules to enforce desired indus-

trial collaborations with respect to an established policy. Regarding

our representational approach, we use Marginal Contribution Nets

(MC-Nets) as rule-based cooperative game representations. This

simply fosters the combination of regulative rules and ISN games

with no loss in expressiveness. Applying regulatory rules to ISNs
enables ISN policy-makers to transform ISN games and ensure the

implementability of desired ones in a fair and stable manner.

In this work, we provide a succinct game-theoretic framework

for the implementation phase of ISNs. Moreover, we develop al-

gorithmic methods for generating regulations that ensure the im-

plementability of an ISN. Finally, as a policy support, we show the

ISN policy requirements that guarantee the implementability of all

the desired industrial collaborations in a balanced-budget way.

2 CONCEPTUAL ANALYSIS
In this section, we 1) present the intuition behind our approach

using a running example, 2) discuss our norm-based perspective for

capturing ISN regulations, 3) describe the evaluation criteria for

an ideal ISN implementation framework, and 4) review previous

work on tailoring game-theoretic solution concepts for industrial

symbiosis implementation problem.

ISN as a Cooperative Practice. To explain the dynamics of imple-

menting ISNs as cooperative industrial practices, we use a running

example. Imagine three industries i , j, and k in an industrial park

such that ri , r j , and rk are among recyclable resources in the three

firms’ wastes, respectively. Moreover, i , j , and k require rk , ri , and r j
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as their primary inputs, respectively. In such scenarios, discharging

wastes and purchasing traditional primary inputs are transactions

that incur cost. Hence, having the chance to reuse a material, firms

prefer recycling and transporting reusable resources to other enter-

prises if such transactions result in obtainable cost reductions for

both parties. I.e., if it reduces the related costs for dischargingwastes

(on the resource provider side) and purchasing cost (on the resource

receiver side). The implementation of such an industrial network

involves transportation, treatment, and transaction costs. In prin-

ciple, aggregating resource treatment processes using refineries,

combining transaction costs, and coordinating joint transportation

may lead to significant cost reductions at the collective level.

What we call the ISN implementation problem focuses on meth-

ods for sharing this obtainable collective benefit among involved

firms. Simply stated, the applied method for allocating the total

obtainable benefit among involved agents is crucial while reasoning

about implementing an ISN. Imagine a scenario in which symbiotic

relations ij , ik , and jk , respectively result in 4, 5, and 4 utility units

of benefit, the symbiotic network ijk leads to 6 units of benefit,

and each agent can be involved in at most one symbiotic relation.

To implement the ijk ISN, one main question is about the method

for distributing the benefit value 6 among the three agents such

that they all be induced to implement this ISN. For instance, as
i and k can obtain 5 utils together, they will defect the ISN ijk if

we divide the 6 units of util equally (2 utils to each agent). Note

that allocating benefit values lower than the benefit obtainable in

case firms defects the collaboration results in unstable ISNs and
unfair mechanisms that disregard contribution of firms may cause

the firms to move to other ISNs that do so. In brief, even if an

ISN results in sufficient cost reductions (at the collective level), its

implementation and applied allocation methods determine whether

it will be realized and maintained. Our main objective in this work

is to provide a game-theoretic implementation framework for ISNs

that enables fair and stable allocation of obtainable benefits.

ISN Regulations as Norms. In real cases, ISNs take place under
regulations that concern environmental as well as societal policies.

For instance, avoiding waste discharge may be encouraged by the

local authority or transporting a specific type of hazardous waste

may be forbidden in a region. Accordingly, to nudge the collective

behavior, monetary incentives in the form of subsidies and taxes

are well-established solutions.This shows that the ISN implementa-

tion problem is not only about decision processes among industry

representatives (at a microlevel) but in addition involves regulatory

dimensions (at a macrolevel).

To capture the regulatory dimension of ISNs, we apply a norma-

tive policy that respects the socioeconomic as well as environmen-

tal desirabilities and categorizes possible coalitions of industries in

three classes of: promoted, permitted, and prohibited. Accordingly,
the regulatory agent respects this classification and allocates incen-

tives such that industrial agents will be induced to: implement a

promoted ISN and avoid prohibited ones (while permitted ISNs are

neutral from the policy-maker’s point of view). We call the ISNs
that take place under regulations, Coordinated ISNs (C−ISNs). Note

that the term “coordination” in this context refers to monetary in-

centive mechanisms in the ISN implementation phase, and should
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Figure 1: At themicro level,A represents the set of all benefit
allocation methods that are preferable for all the firms. At
the macro level, due to introduced coordinationmechanism
by the regulatory agent (respecting the established socioeco-
nomic policy), we have the allocation set Â either equal to A
or as a shrunk/extended version of it.

not be confused with ISN administration (i.e., managing the evolu-

tion of relations). Figure 1 presents a schematic view on the role of

the regulatory agents in C−ISNs.

Evaluation Criteria for ISN Implementation. Dealing with agents

that perform in a complex industrial context calls for implementa-

tion platforms that can be tuned to specific settings, can be scaled for

implementing various ISN topologies, do not require industries to

sacrifice financially, and allow industries to practice their freedom

in the market. We deem that the quality of an ISN implementation

should be evaluated by (1) Generality as the level of flexibility in the
sense of independence from agents’ internal reasoning processes

(i.e., how much the framework adheres to the principle of separa-
tion of concerns), (2) Expressivity as the level of scalability in the

sense of independence from size and topology of the network, (3)

Rationality as the level that the employed allocation mechanisms

comply to the collective as well as individual rationality axiom (i.e.,

the framework should assume that no agent (group) participates in

a cooperative practice if they expect higher utility otherwise), and

(4) Autonomy as the level of allowance (i.e., non-restrictiveness) of

the employed coordination mechanisms. Then an ideal framework

for implementing ISNs should be general, sufficiently expressive,

rationally acceptable for all firms, and respect their autonomy. The

goal of this paper is to develop an implementation framework for

ISNs that has properties close to the ideal one.

Previous Work. The idea of employing cooperative game theory

for analyzing industrial symbiosis or implementing symbiotic rela-

tions as a cooperative games have only been sparsely explored in

the past [7, 11, 28]. In [11], Grimes-Casey et al. used both coopera-

tive and non-cooperative game theory for analyzing the behavior

of firms engaged in a case-specific industrial ecology. While the

analysis is expressive and scalable, the implemented relations are
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specific to refillable/disposable bottle life-cycles. In [7], Chew et

al. tailored a mechanism for allocating costs among participating

agents that expects an involved industry to “bear the extra cost”.

Although such an approach results in collective benefits, it is not in-

line with the individual rationality axiom. In [28], Yazdanpanah and

Yazan model bilateral industrial symbiotic relations as cooperative

games and show that in such a specific class of symbiotic relations,

the total operational costs can be allocated fairly and stably. Our

work relaxes the limitation on the number of involved industries

and, using MC-Nets, enables a representation that is sufficiently

expressive to capture the regulatory aspect of ISNs. We will give a

more detailed review of these papers in Section 3.2 after covering

the technical background.

3 PRELIMINARIES
In this section, we recall the preliminary notions in cooperative

games, the MC-Net representation of such games, and the two prin-

cipal solution concepts, the Shapley value and the Core
1
. Moreover,

we discuss in more detail the technical aspects of previous work that

applied game-theoretical methods for ISN modeling and analysis.

3.1 Technical Background
In this work, we build on the transferable utility assumption. This

is to assume that the payoff to a group of agents involved in an ISN
(as a cooperative practice) can be freely distributed among group

members.

Cooperative Games. Cooperative games with transferable utility

are often modeled by the tuple (N ,v), where N is the finite set of

agents andv : 2
N 7→ R is the characteristic function that maps each

possible agent group S ⊆ N to a real-valued payoff. In such games,

the so called allocation problem focuses on methods to distribute

v(S) among all the agents (in S) in a reasonable manner. I.e., as

v(S) is the result of a potential cooperative practice, hence ought
to be distributed among agents in S such that they all be induced

to cooperate. Various solution concepts specify the utility each

agent receives by taking into account properties like fairness and

stability. The two standard solution concepts that characterize fair

and stable allocation of benefits are the Shapley value and the Core,

respectively.

The Shapley Value. The Shapley value prescribes a notion of fair-
ness. It says that assuming the formation of the grand coalition N ,

each agent i ∈ N should receive its average marginal contribution

over all possible permutations of the agent groups. Let s and n, rep-
resent the cardinality of S and N , respectively. Then, the Shapley

value of i under characteristic function v , denoted by Φi (v), is for-
mally specified as Φi (v) =

∑
S ⊆N \{i }

s !(n−s−1)!
n! (v(S ∪ {i}) −v(S)).

For a game (N ,v), the unique list of real-valued payoffs x =
(Φ1(v), · · · ,Φn (v)) ∈ Rn is called the Shapley allocation for the

game. The Shapley allocation have been extensively studied in the

game theory literature and satisfies various desired properties in

cooperative multi-agent practices. Moreover, it can be axiomatized

using the following properties.

1
The presented material on basics in cooperative games is based on [20, 23] while for

the MC-Net notations, we build on [14, 17].

• Efficiency (EFF) The overall available utility v(N ) is allocated
to the agents in N , i.e.,

∑
i ∈N

Φi (v) = v(N ).

• Symmetry (SYM) Any arbitrary agents i and j that make the

same contribution receive the same payoff, i.e., Φi (v) = Φj (v).
• Dummy Player (DUM) Any arbitrary agent i of which its mar-

ginal contribution to each group S is the same, receives the payoff

that it can earn on its own; i.e., Φi (v) = v({i}).
• Additivity (ADD) For any two cooperative games (N ,v) and
(N ,w), Φi (u + w) = Φi (v) + Φi (w) for all i ∈ N , where for all

S ⊆ N , the characteristic functionv+w is defined as (v+w)(S) =
v(S) +w(S).

The Core of the Game. In core allocations, the focus is on the

notion of stability. In brief, an allocation is stable if no agent (group)

benefits by defecting the cooperation. Formally, for a game (N ,v),
any list of real-valued payoffs x ∈ Rn that satisfies the following

conditions is a core allocation for the game:

• Rationality (RAT) ∀S ⊆ N :

∑
i ∈S

xi ≥ v(S)

• Efficiency (EFF)
∑
i ∈N

xi = v(N )

One main question is whether for a given game, the core is non-

empty (i.e., that there exists a stable allocation for the game). A game

for which there exist a non-empty set of stable allocations should

satisfy the balancedness property, defined as follows. Let 1S ∈ Rn be

the membership vector of S , where (1S )i = 1 if i ∈ S and (1S )i = 0

otherwise. Moreover, let (λS )S ⊆N be a vector of weights λS ∈ [0, 1].
A vector (λS )S ⊆N is a balanced vector if for all i ∈ N , we have that∑
S ⊆N λS (1S )i = 1. Finally, a game is balanced if for all balanced

vectors of weights, we have that

∑
S ⊆N λSv(S) ≤ v(N ). According

to the Bondereva-Shapley theorem, a game has a non-empty core

if and only if it is balanced.

Marginal Contribution Nets (MC-Nets). Representing cooperative
games by their characteristic functions (i.e., specifying values v(S)
for all the possible coalitions S ⊆ N ) may become unfeasible in

large-scale applications since 2
n
values are required. In this work,

as we are aiming to implement (potentially large) ISNs in a scalable

manner, we use basic MC-Net [14] representation that uses a set of

rules to specify the value of possible agent coalitions. Moreover, at-

tempting to capture the regulatory aspect of ISNs makes employing

rule-based game representations a natural approach.

A basic MC-Net represents the cooperative game among agents

in N as a finite set of rules {ρi : (Pi ,Ni ) 7→ vi }i ∈K , where Pi ⊆ N ,

Ni ⊂ N , Pi ∩Ni = ∅, vi ∈ R \ {0}, and K is the set of rule indices.

For an agent coalition S ⊆ N , a rule ρi is applicable if Pi ⊆ S and

Ni ∩ S = ∅ (i.e., S contains all the agents in Pi and no agent in

Ni ). Let Π(S) denote the set of rule indices that are applicable to S .
Then the value of S , denoted by v(S), will be equal to ∑

i ∈Π(S )vi .
In further sections, we present an MC-Net representation of the

ijk ISN scenario and illustrate how this rule-based representation

enables applying norm-based coordination to ISNs.

3.2 Revisiting Previous Work
Chew et al. in [7] analyze the interaction of participating companies

in an Eco-industrial park seeking to develop a game-theoretic im-

plementation framework for inter-plant water integration. In their

cooperative game model, by assuming the compliance of agents
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to their commitments, the optimum collective benefit is achiev-

able. As the authors mention, in case the cooperation takes place,

their allocation mechanism results in higher collective payoff in

comparison to their non-cooperative game scheme. This result is

achieved through adding contextualized interaction protocols that

compel the industries to act in a desired manner. Roughly speaking,

it is assumed that the network manager has control over internal

operations and decision processes of involved agents (which may

be applicable in specific case studies but is in contrast with the prin-

ciple of separation of concerns). For instance, given the availability

of an optimal wastewater interchange scheme, it is shown that in

case the agents adopt the scheme and act accordingly, they can

benefit both individually and collectively. In other words, the focus

is shifted towards providing methods for optimizing the scheme in

a specific case.

In a more recent work, Yazdanpanah and Yazan looked into the

modeling and implementation of industrial symbiotic relations as

two person cooperative games [28]. Their focus is on allocation of

the total operational cost among involved agents using a tailored

version of the Shapley value and the standard notion of core. They

show that for industrial symbiotic relation games, core is non-empty

and hence such symbiotic practices are implementable in a stable

manner. Moreover, as the Shapley value will be in the core, it is

rational for industries to implement the Shapley allocation (with

no need for interruption from the regulatory agent). Notice that

although their industrial symbiosis implementation satisfies desired

properties, e.g., autonomy and rationality, it is not expressive for

implementing symbiotic relations among three or more industries.

This is basically because their analysis is based on properties of

two-person games.

Finally, Grimes-Casey et al. [11] focus on cooperative decision-

making and heterogeneity of the involved agents (with respect to

their epistemic states) in an industrial symbiosis scenario. They

employ cost-based mechanisms to nudge the behavior of manufac-

turer as well as consumer agents towards using refillable beverage

containers. Although their cooperative management framework is

problem-specific, it is expressive and scalable as they employ profit

values that are computable in low complexity. They also discuss that

in real cases, the applicability of most cooperative game solution

concepts depends on government enforcement. This is in-line with

our attempt to capture the regulatory aspect of industrial symbiosis

using incentive mechanisms.

4 ISN GAMES
As discussed in [1, 28], the total obtainable cost reduction (as an

economic benefit) and its allocation among involved firms are key

drivers behind the stability of ISNs. For any set of industrial agents

S , this total value can be computed based on the total traditional
cost, denoted by T (S), and the total ISN operational cost, denoted
by O(S). In brief, T (S) is the summation of all the costs that firms

have to pay in case the ISN does not occur (i.e., to discharge wastes

and to purchase traditional primary inputs). On the other hand,

O(S) is the summation of costs that firms have to pay collectively in

case the ISN is realized (i.e., the costs for recycling and treatment,

for transporting resources among firms, and finally the transaction

costs). Accordingly, for a non-empty finite set of industrial agents

S the obtainable symbiotic value v(S) is equal to T (S) − O(S). In
this work, we assume a potential ISN, with a positive total obtain-

able value, and aim for tailoring game-theoretic value allocation

mechanisms that guarantee a fair and stable implementation of the

symbiosis.

4.1 ISNs as Cooperative Games
Our ijk ISN scenario can be modeled as a cooperative game in

which v(S) for any empty/singleton S is 0 and agent groups ij, ik ,
jk , and ijk have the values 4, 5, 4, and 6, respectively. Note that

as the focus of ISNs are on the benefit values obtainable due to

potential cost reductions, all the empty and singleton agent groups

have a zero value because cost reduction is meaningless in such

cases. In the game theory language, the payoffs in ISN games are

normalized. Moreover, the game is superadditive
2
in nature. So,

given the traditional and operational cost values for all the possible

agent groups S (i.e., T (S) and O(S)) in the non-empty finite set of

industrial agents N , the ISN among agents in N can be formally

modeled as follows.

Definition 4.1 (ISN Games). Let N be a non-empty finite set of

industrial agents. Moreover, for any agent group S ⊆ N , letT (S) and
O(S) respectively denote the total traditional and operational costs

for S . We say the ISN among industrial agents in N is a normalized

superadditive cooperative game (N ,v) where v(S) is:

v(S) =
{
0, if |S | ≤ 1

T (S) −O(S), otherwise

According to the following proposition, basic MC-Nets can be

used to represent ISNs. In further sections, this representation aids

combining ISN games with normative coordination rules.

Proposition 4.2 (ISNs as MC-Nets). Any ISN can be repre-
sented as a basic MC-Net.

Proof. We provide a constructive proof by (1) introducing an

algorithm for specification of all the required MC-Net rules and (2)

showing that the constructed MC-Net is equal to the original ISN
game. (1) - Let (N ,v) be an arbitrary ISN game among industrial

agents in N . Moreover, let S≥2 = {S ⊆ N : |S | ≥ 2} be the set

of all agent groups with two or more members and let K = |S≥2 |
denote its cardinality. We start with an empty set of rules. Then

for all agent groups Si ∈ S≥2, for i = 1, . . . ,K , we add a rule

{ρi : (Si ,N \Si ) 7→ vi = T (Si )−O(Si )}. (2) -As in all the constructed
rules ρi it holds that Pi ∩ Ni = ∅ and Pi ∪ Ni = N , we have that∑
i ∈Π(S )vi is equal to v(S) for all the members of S≥2. Moreover,

Π(S) for empty and singleton agent groups would be empty, hence

reflects the 0 value for such groups in the original game. □

Note that the proof does not simply rely on the representation

power and expressivity of MC-Nets (as shown in [14]) but pro-

vides a constructive method that respects the context of industrial

symbiosis and related cost values to generate all the required rules

for representing ISNs as MC-Nets. Our running example can be

2
Superadditivity implies that forming a symbiotic coalition of industrial agents either

results in no value or in a positive value.
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represented by the basic MC-Net
3 {ρ1 : (ij,k) 7→ 4, ρ2 : (ik, j) 7→

5, ρ3 : (jk, i) 7→ 4, ρ4 : (ijk, ∅) 7→ 6}.

4.2 Allocation Mechanisms and ISN Games
As discussed earlier, how firms share the obtainable ISN benefits

plays a key role in the process of ISN implementation, mainly due

to stability and fairness concerns. Roughly speaking, industrial

firms are economically rational firms that defect non-beneficial

relations (instability) and mostly tend to reject ISN proposals in

which benefits are not shared with respect to their contribution

(unfairness). In this work, we focus on Core- and Shapley-allocation

mechanisms as two standard methods that characterize stability

and fairness in cooperative games, receptively. We show that these

solution concepts are applicable in a specific class of ISNs but are
not generally scalable for value allocation in the implementation

phase of ISNs. This motivates introducing incentive mechanisms

to guarantee the implementability of “desired” ISNs.

4.2.1 Two-Person ISN Games. When the game is between two

industrial firms (i.e., a bilateral relation between a resource re-

ceiver/provider couple), it has additional properties that result

in applicability of both Core and Shapley allocations. We denote

the class of such ISN games by ISNΛ. This is, ISNΛ = {(N ,v) :
(N ,v) is an ISN game ∧ |N | = 2}. Moreover, the ISN games in

which three or more agents are involved will form ISN∆. The class

of ISNΛ games corresponds to the so called ISR games in [28]. The

difference is on the value allocation perspective as they assume the

elimination of traditional costs (thanks to implementation of the

symbiotic relation) and focus on the allocation of operational costs;

while we focus on the allocation of the total benefit, obtainable due

to potential cost reductions.

Lemma 4.3 (ISNΛ Balancedness). Let (N ,v) be an arbitrary
ISNΛ game. It always holds that (N ,v) is balanced.

Proof. We show that any ISNΛ game is supermodular which

directly implies balancedness. A game (N ,v) is supermodular iff

for any couple of arbitrary agent groups S,T ⊆ N , we have v(S) +
v(T ) ≤ v(S ∪T )+v(S ∩T ). In ISNΛ games, by checking the validity

of this inequality for all the six possible S,T combinations, the claim

will be proved. For S = ∅, we have the following valid inequality

v(∅)+v(T ) ≤ v(∅ ∪T = T )+v(∅). For S = N , the inequality can be

reformulated in the following valid form v(N ) +v(T ) ≤ v(N ∪T =
N ) + v(N ∩ T = T ). Finally, when S and T are equal to the only

possible (disjoint) singleton groups, we have v(S) +v(T ) ≤ v(N ) +
v(∅) which holds thanks to the superadditivity of ISN games. □

Relying on Lemma 4.3, we have the following result.

Theorem 4.4 (Fair and Stable ISNΛ Games). Let (N ,v) be
an arbitrary ISNΛ game. The symbiotic relation among industrial
agents in N is always implementable in a stable manner. Moreover,
the symbiotic relation is always implementable in a unique stable
and fair manner.

Proof. Stability: As discussed in 3.1, core allocations guarantee

the stability conditions (i.e., RAT and EFF). However, the core is

3
For notational simplicity, we avoid brackets around agent groups, e.g., we write i j
instead of {i, j }.

only an applicable solution concept for balanced games. According

to Lemma 4.3, we have that ISNΛ games are balanced. Hence, the

core of any arbitrary ISNΛ game is nonempty and any allocation in

the core guarantees the stability. Stability and Fairness: As discussed
in 3.1, the Shapley allocation guarantees the fairness conditions

(i.e., EFF, SYM, DUM, ADD). However, it does not always satisfy

the rationality (RAT) condition (which is necessary for stability).

According to Lemma 4.3, we have that ISNΛ games are balanced.

Moreover, according to [25, Theorem 7], in balanced games, the

Shapley allocation is a member of the core and hence satisfies the

rationality condition. Accordingly, for any ISNΛ game, the Shapley

allocation guarantees both the stability and fairness. □

4.2.2 General ISN Games. In this section we focus on ISN∆

games as the class of ISN games with three or more participants

and discuss the applicability of the two above mentioned allocation

mechanisms for implementing such industrial games. Recall the ijk
ISN∆ scenario from Section 2. To have a stable allocation (xi ,x j ,xk )
in the core, the EFF condition implies xi + x j + xk = 6 while the

RAT condition implies xi + x j ≥ 4 ∧ xi + xk ≥ 5 ∧ x j + xk ≥ 4. As

these conditions are not simultaneously satisfiable, we can conclude

that the core is empty and there exists no way to implement this

ISN in a stable manner. Moreover, although the Shapley allocation

provides a fair allocation (13/6, 10/6, 13/6), it is not rational for
firms to implement the ISN. E.g., i and k obtain 30/6 in case they

defect while according to the Shapley allocation, they are ought

to sacrifice as they collectively have 26/6. As illustrated in this

example, the Core of ISN∆ games may be empty which implies

the inapplicability of this solution concept as a general method for

implementing ISNs. We now generalize the exemplified idea to the

following nonexistence theorem about implementability of ISN∆

games in a fair and stable manner.

Theorem 4.5 (Unimplementability of ISN∆ Games). Let (N ,v)
be an arbitrary ISN∆ game. The symbiotic relation among industrial
agents in N is not always implementable in a stable manner.

Proof. Although all ISN∆ games are superadditive and hence

result in a positive obtainable benefit, they may be unbalanced (as

illustrated in the running example). Accordingly, for any unbal-

anced ISN∆ game, the Core is empty. In such cases, the symbiotic

relation is not implementable in a stable manner. □

Note that the fair implementation of ISN∆ games is not always

in compliance with the rationality condition. So, even if an indus-

trial symbiotic practice could result in collective economic and

environmental benefits, it may not last due to instable or unfair

implementations. One natural response which is in-line with realis-

tic ISN practices is to employ monetary incentives as a means of

coordination.

5 COORDINATED ISN GAMES
In realistic ISNs, the symbiotic practice takes place in the presence

of economic, social, and environmental policies and under regula-
tions that aim to enforce the policies and nudge the behavior of

agents towards desired ones. In other words, while the policies

generally indicate whether an ISN is “good (bad, or neutral)", the

regulations are a set of norms that, in case of agents’ compliance,
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result in an acceptable spectrum of collective behaviors. Note that

the acceptability, i.e., goodness, is evaluated and ought to be verified

from the point of view of the policy-makers as community represen-

tatives. In this section, we follow this normative approach and aim

for using normative coordination to guarantee the implementability

of desirable ISNs in a stable and fair manner
4
.

5.1 Normative Coordination of ISNs
Following [12, 26], we see that during the process of ISN implemen-

tation as a game, norms can be employed as game transformations,

i.e., as “ways of transforming existing games in order to bring about

outcomes that are more desirable from a welfaristic point of view".

For this account, given the economic, environmental, and social

dimensions and with respect to potential socioeconomic conse-

quences, industrial symbiotic networks can be partitioned in three

classes, namely promoted, permitted, and prohibited ISNs. Such a

classification can be modeled by a normative socioeconomic policy

function ℘ : S 7→ {p+,p◦,p−}, where S is a finite set of industrial

firms. Moreover, p+, p◦, and p− are labels indicating that the ISN
among agents in S is either promoted, permitted, or prohibited,

respectively. The three sets P+℘, P
◦
℘, and P−℘ consist of all the ℘-

promoted, -permitted, and -prohibited agent groups, respectively

(e.g., P+℘ = {S : ℘(S) = p+}). Note that ℘ is independent of the ISN
game among agents in S and its characteristic value function. E.g.,

a symbiotic relation may be labeled with p− by policy ℘ even if it

results in a high level of obtainable benefit.

Example 5.1 (Normative ISNs). In our ijk ISN scenario, imagine

a policy ℘1 that assigns p
−
to all the singleton and two-member

groups (e.g., because they discharge hazardous wastes in case they

operate in one- or two-member groups) and p+ to the grand coali-

tion (e.g., because in that case they have zero waste discharge). So,

according to ℘1, the ISN among all the three agents is “desirable"

while other possible coalitions lead to “undesirable” ISNs.

As illustrated in Example 5.1, any socioeconomic policy function

merely indicates the desirability of a potential ISN among a given

group of agents and is silent with respect to methods for enforcing
the implementability of promoted or unimplementability of prohib-

ited ISNs5. The rationale behind introducing socioeconomic poli-

cies for ISNs is mainly to make sure that the set of promoted ISNs

are implementable in a fair and stable manner while prohibited ones

are instable. To ensure this, in real ISN practices, the regulatory

agent (i.e., the regional or national government) introduces regula-

tions in the form of monetary incentives. This is to ascribe subsidies

to promoted and taxes to prohibited collaborations (see [16] for

an implementation theory approach on mechanisms that employ

monetary incentives to achieve desirable resource allocations). We

follow this practice and employ a set of rules to ensure/avoid the im-

plementability of desired/undesired ISNs among industrial agents

in N via allocating incentives. Such a set of incentive rules can be

represented by an MC-Netℜ = {ρi : (Pi ,Ni ) 7→ ιi }i ∈K in which

K is the set of rule indices. Let ℑ(S) denote the set of rule indices

4
In the following, we simply say implementability of ISNs instead of implementability
in a fair and stable manner.

5
Note that ISNΛ games are always implementable. So, ISNs’ implementability refers

to the general class of ISN games including ISN∆ games.

that are applicable to S ⊆ N . Then, the incentive value for S , de-
noted by ι(S), is defined as

∑
i ∈ℑ(S ) ιi

6
. The following proposition

shows that for any ISN game there exist a set of incentive rules to

guarantee the implementability of the ISN in question.

Proposition 5.2 (Implementability Ensuring Rules). LetG
be an arbitrary ISN game among industrial agents in N . There exists
a set of incentive rules to guarantee the implementability of G.

Proof. Recall that according to Proposition 4.2, G can be repre-

sented as an MC-Net. To prove the claim, we provide Algorithm 1

that takes the MC-Net representation of G as the input and gener-

ates a set of rules that guarantee the implementability of G.

Data: ISN game G = {ρi : (Pi ,Ni ) 7→ vi }i ∈K among agents

in N ; K the set of rule indices for G
Result: Incentive rule setℜ for G

1 n ← lenдth(K) andℜ = {};
2 for i ← 1 to n do
3 if i ∈ Π(N ) then
4 ℜ←ℜ∪ {ρi : (Pi ,Ni ) 7→ 0};
5 else
6 ℜ←ℜ∪ {ρi : (Pi ,Ni ) 7→ −vi };
7 end
8 end
Algorithm 1: Generating incentive rule setℜ for ISN game G.

By allocating −vi to rules that are not applicable to N , any coali-

tion other than the grand coalition will be faced with a tax value.

As the original game is superadditive, the agents will have a ratio-

nal incentive to cooperate in N and the ISN is implementable in a

stable manner thanks to the provided incentive rules. □

Till now, we have both socioeconomic policies and regulations as

required (but not yet integrated) elements for modeling coordinated

ISNs. In the following section, we combine the idea behind incentive

regulations and normative socioeconomic policies to introduce the

concept of Coordinated ISNs (C−ISNs).

5.2 Coordinated ISNs
As discussed above, ISN games can be combined with a set of regu-

latory rules that allocate incentives to agent groups (in the form of

subsidies and taxes). We call this class of games, ISN games in pres-

ence of coordination mechanisms, or Coordinated ISNs (C−ISNs)
in brief.

Definition 5.3 (Coordinated ISN Games (C−ISN)). Let G be an

ISN andℜ be a set of regulatory incentive rules, both as MC-Nets

among industrial agents in N . Moreover, for each agent group

S ⊆ N , letv(S) and ι(S) denote the value of S inG and the incentive

value of S inℜ, respectively. We say the Coordinated ISN Game

(C−ISN) among industrial agents in N is a cooperative game (N , c)
where for each agent group S , we have that c(S) = v(S) + ι(S).

6
This is, a set of incentive rules can be represented also as a cooperative gameℜ =
(N , ι) among agents in N .
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Note that as both the ISN game G and the set of regulatory

incentive rulesℜ are MC-Nets among industrial agents in N , then

for each agent group S ⊆ N we have that c(S) is equal to the

summation of all the applicable rules to S in bothG andℜ. Formally,

c(S) = ∑
i ∈Π(S )vi +

∑
j ∈ℑ(S ) ι j where Π(S) and ℑ(S) denote the set

of applicable rules to S in G andℜ, respectively. Moreover, vi and
ι j denote the value of applicable rules i and j in Π(S) and ℑ(S),
respectively. We sometime use G +ℜ to denote the game C as the

result of incentivizing G withℜ. The next proposition shows the

role of regulatory rules in enforcement of socioeconomic policies.

Proposition 5.4 (Policy Enforcing Rules). For any promoted
ISN game G under policy ℘, there exist an implementable C−ISN
game C .

Proof. To prove, for any arbitrary promotedG , we require a set
of regulatory incentive rulesℜ such that its combination with G
results in a stable C implementation. The algorithm for generating

such aℜ is presented in the proof of Proposition 5.2. □

Analogously, similar properties hold while avoiding prohibited

ISNs or allowing permitted ones. Avoiding prohibited ISNs can
be achieved by making the C−ISN (that results from introducing

regulatory incentives) unimplementable. On the other hand, allow-

ing permitted ISNs would be simply the result of adding an empty

set of regulatory rules. The presented approach for incentivizing

ISNs, is advisable when the policy-maker is aiming to ensure the

implementability of a promoted ISN in an ad-hoc way. In other

words, anℜ that ensures the implementability of a promoted ISN
G1 may ruin the implementability of another promoted ISN G2.

This highlights the importance of some structural properties for

socioeconomic policies that aim to foster the implementability of

desired ISNs. As we discussed in Section 2, we aim for implement-

ing ISNs such that the rationality axiom will be respected. In the

following, we focus on the subtleties of socioeconomic policies

that are enforced by regulatory rules. The question is, what are the

properties of a policy that can ensure the irrationality of defecting

desired ISNs? We first show that to respect the rationality axiom,

promoted agent groups should be disjoint. We illustrate that in

case the policy-maker takes this condition into account, industrial

agents have no economic incentive to defect an implementable

promoted ISN.

Proposition 5.5 (Mutual Exclusivity of Promoted ISNs).
LetG1 andG2 be arbitrary ISNs, respectively among promoted (nonempty)
agent groups S1 and S2 under policy ℘ (i.e., S1, S2 ∈ P+℘). Moreover, let
ℜ1 andℜ2 be rule sets that ensure the implementability of G1 and
G2, respectively. For i ∈ {1, 2}, defecting from C−ISN Ci = Gi +ℜi
is not economically rational for any agent a ∈ Si iff S1 ∩ S2 = ∅.

Proof. “ ⇒ ”: Suppose S1 ∩ S2 , ∅. Accordingly, we have an
agent a which is both a member of S1 and S2. For a it is rational

to defect either S1 or S2 as both the two C−ISNs that are based on

the two groups are implementable.

“ ⇐ ”: Suppose S1 and S2 are disjoint promoted agent groups

under ℘. Asℜ1 andℜ2 can respectively ensure the implementabil-

ity of these two groups and based on Proposition 4.2, we have that

ISNs among firms in S1 and S2 are both implementable in a stable

manner. Hence, they satisfy the rationality axiom. Moreover, as

the two agent groups share no agent, there will be no economic

incentive to deviate between the two stable ISNs. □

Accordingly, given a set of industrial agents in N and a socioe-

conomic policy ℘ we directly have that:

Proposition 5.6 (Minimality of Promoted ISNs). Forn = |P+℘ |

if
n⋂
i=1

Si ∈ P+℘ = ∅ then any arbitrary Si ∈ P+℘ is minimal (i.e.,

S ′i < P
+
℘ for any S ′i ⊂ Si ).

Roughly speaking, the exclusivity condition for promoted agent

groups entails that any agent is in at most one promoted group.

Hence, deviation of agents does not lead to a larger promoted group

as no promoted group is part of a promoted super-group, or contains

a promoted sub-group. In the following, we show that the mutual

exclusivity condition is sufficient for ensuring the implementability

of all the ISNs that take place among promoted groups of firms.

Theorem 5.7 (Implementability of Promoted C−ISNs under

Exclusivity Condition). Let G be an arbitrary ISN∆ game under
policy ℘ among industrial agents in N and n be the cardinality of P+℘.

If
n⋂
i=1

Si ∈ P+℘ = ∅, then there exists a set of regulatory rulesℜ, such

that all the promoted symbiotic networks are implementable in the
coordinated ISN defined by C = G +ℜ. Moreover, any ISN among
prohibited agent groups in P−℘ will be unimplementable.

Proof. To prove, we provide a method to generate such an

implementability ensuring set of rules. We start with an emptyℜ.

Then for all n promoted Si ∈ P+℘, we call the provided algorithm in

Proposition 5.2. Each single run of this algorithm results in aℜi
that guarantees the implementability of the industrial symbiosis

among the set of firms in the promoted group Si . As the set of

promoted agent groups comply to the mutual exclusivity condition,

the unification of all the regulatory rules results in a general ℜ.

Formally,ℜ =
n⋃
i=1
ℜi . Moreover, as the algorithm applies taxation

on non-promoted groups, no ISN among prohibited agent groups

will be implementable. □

Example 5.8 (ijk as a Normatively Coordinated C−ISN). Recalling
the ISN scenario in Example 5.1, the only promoted group is the

grand coalition while other possible agent groups are prohibited. To

ensure the implementability of the unique promoted group and to

avoid the implementability of other groups, the result of executing

our algorithm is ℜ = {ρ1 : (ij,k) 7→ −4, ρ2 : (ik, j) 7→ −5, ρ3 :

(jk, i) 7→ −4}. In the C−ISN that results from adding ℜ to the

original ISN, industrial symbiosis among firms in the promoted

group is implementable while all the prohibited groups cannot

implement a stable symbiosis.

5.3 Realized ISNs and Budget-Balancedness
As we mentioned in the beginning of Section 5, regulations are

set of norms that in case of agents’ compliance bring about the

desired behavior. For instance, in Example 5.8, although according

to the provided tax-based rules, defecting the grand coalition is not

economically rational, it is probable that agents act irrationally (e.g.,

due to trust-/reputation-related issues) and go out of the promoted

group. This results in possible normative behavior of a C−ISN
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with respect to an established policy ℘. So, assuming that based on

evidences the set of implemented ISNs are realizable, we have the

following abstract definition of C−ISN’s normative behavior under

a socioeconomic policy.

Definition 5.9 (C−ISN’s Normative Behavior). Let C be a C−ISN
among industrial agents in N under policy ℘ and let E be the ev-

idence set that includes all the implemented ISNs among agents

in N . We say the behavior of C complies to ℘ according to E iff

E = P+℘; and violates it otherwise.

Given an ISN under a policy, we introduced a set of regula-

tory rules to ensure that all the promoted ISNs will be imple-

mentable. However, although providing incentives makes them

implementable, the autonomy of industrial agents may result in

situations that not all the promoted agent groups implement their

ISN. So, although we can ensure the implementability of all the

promoted ISNs, the real behavior may deviate from a desired one.

As our introduced method for guaranteeing the implementability

of ISNs among promoted agent groups is mainly tax-based, if a

C−ISN violates the policy, we end up with collectible tax values.

In such cases, our tax-based method can become a balanced-budget
monetary incentive mechanism (as discussed in [13, 18, 24]) by

employing a form of “Robin-Hood” principle and redistributing the

collected amount among promoted agent groups that implemented

their ISN. In the following, we provide an algorithm that guarantees

budget-balancedness by means of a Shapley-based redistribution of

the collectible tax value among agents that implemented promoted

ISNs.

Data: C = G +ℜ the C−ISN game among industrial agents

in N under policy ℘ such that all the ISNs among

promoted groups in P+℘ are implementable;

E the set of implemented ISNs;
The collectible tax value τ .
Result: Ωi (C, ℘) the distributable incentive value to i ∈ N .

1 S+ ← E ∩ P+℘ , S+u ←
⋃

S ∈S+
S ;

2 foreach i ∈ (S+u ,v) the sub-game of G do
3 k ← Φi (v) the Shapley value of i in (S+u ,v);
4 Ωi (C, ℘) = 1

v(S+u )
.τ .k ;

5 end
Algorithm 2: Tax Redistribution for C−ISN game C .

The correctness of Algorithm 2 is established in Proposition 5.10.

Proposition 5.10 (Budget Balancedness and Fairness). Let
C = G +ℜ be a C−ISN among industrial agents in N under policy
℘ such that all the ISNs among promoted groups are implementable
(using the provided method in Theorem 5.7) and let E be the set of
implemented ISNs. For any C−ISN, the incentive values returned by
Algorithm 2 ensures budget balancedness while preserving fairness
(i.e., EFF, SYM, DUM, and ADD).

Proof. To have budget balancedness, we have to show that the

total collectible
7
tax value (using the provided method in Theorem

7
Considering a disposal account (under control of the regulatory agent) for each firm,

it is reasonable to assume that collectible τ is equal to collected τ .

5.7) is equal to allocated subsidies. If the C−ISN is ℘-compliant,

this is obvious as τ is equal to zero (thanks to the implementation

of all the promoted ISNs). When the C−ISN is ℘-violating, we use

the Shapley value of each agent that contributes to the sub-game

of implemented promoted ISNs. As we employ a Shapley-based

method, the monetary incentive is budget-balanced thanks to the

EFF property and in addition preserves the other three properties

(i.e., SYM, DUM, and ADD). □

Note that the redistribution phase takes place after the implemen-

tation of the ISNs and with respect to the evidence set E. Otherwise,
there will be cases in which the redistribution process provides

incentives for agent groups to defect the set of promoted collabora-

tions.

6 CONCLUDING REMARKS
This paper provides a game-theoretic framework for implement-

ing ISN games that take place under a socioeconomic policy. This

extends the previous work that merely focused on operational

aspects of industrial symbiotic relations by introducing the ana-

lytical study of the regulatory aspect of ISNs. In practice, such a

framework supports decision-makers in the ISN implementation

phase by providing tools for reasoning about the implementability

of a given ISN in a fair and stable manner. Moreover, it supports

policy-makers aiming to foster socioeconomically desirable ISNs
by providing algorithms that generate the required regulatory rules.

Finally, it shows that MC-Net is an expressive game representation

for applying normative coordination mechanisms to cooperative

games.

This paper focuses on a unique socioeconomic policy and a set

of rules to ensure it. In this regard, one question that deserves in-

vestigation is the possibility of having multiple policy options and

policy-support tools for policy option analysis [21] in ISNs. Such
a framework assists ranking and investigating the applicability of

a set of policies in a particular ISN scenario. Along this line, we

aim to generate a regulation toolbox for ISN policy-makers since a

regulation may be incapable of ensuring all the desired collabora-

tions under potentially conflicting policies. In that case, possible

conflicts among regulations can be resolved using prioritized rule

sets (inspired by methods for dealing with potential extensions in

argumentation theory [15, 22]). Accordingly, we will have distin-

guishable potential ISN worlds where in each a set of promoted

ISNs are implementable while others are not.

In future work, we also aim to focus on administration of ISNs.
Then, compliance of involved agents to their commitments during

the evolvement of the relations will be the main concern. For that,

we plan to model ISNs as normative multi-agent organizations

in which agents are related to roles and are able to reason about

organizational goals [4, 29]. Thence, we can rely on norm-aware

organization frameworks that focus on operation of normative

organizations [2, 8] to monitor the organization’s behavior. Finally,

we aim to illustrate the validity of our formally verified framework

using realistic case studies and multiagent-based simulations (as

presented in [10]).
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