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Introduction
The potential advantages of melt crystallization as a 

separation method make it a suitable candidate as a 

downstream purification technique in bioprocesses. To 

successfully implement this method, this work aims to 

evaluate potential modification and optimizations 

required according to system’s fundamental 

thermodynamics and kinetics.  
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Figure 1. Predicted VLE diagram of ethylene glycol/1,2-pentanedol 

mixture using Aspen plus V12.1
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Conclusion

• Solvent-aided layer melt crystallization shows high separation efficiency in purification of 

relatively high viscosity polyols and diols.

• The addition of solvent in both systems increased the driving force required to obtain the 

same equilibrium as the solvent-free melt.

• The effect of the solvent on crystal growth rate varies depending on the studied system. This 

may imply that the interfacial kinetics plays an important role in the crystal growth rate.

• Higher concentration of solvent enhances the purification efficiency and maintains the purity 

level at high crystallization yield.
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Thermodynamics: effect of solvent on 

required driving force to obtain same 

equilibrium yield
Different kinetic responses to additives 

Approach

• The overall efficiency of the process was evaluated in both 

solvent-free and solvent-aided case studies by examining the 

effect of the solvent on non-ideal behavior of the system and 

crystal growth kinetics.

• Predictive UNIFAC Dortmund model and semi-empirical 

NRTL model were used to calculate thermodynamic driving 

force for crystallization

∆𝜇

𝑅𝑇
= ln

𝑎

𝑎∗
= ln(

𝑥𝑖𝛾𝑖
𝑥𝑖
∗𝛾𝑖

∗)

• Crystallization kinetics were measured in layer melt 

crystallization method as a suitable technique for relatively 

high viscosity melts
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