

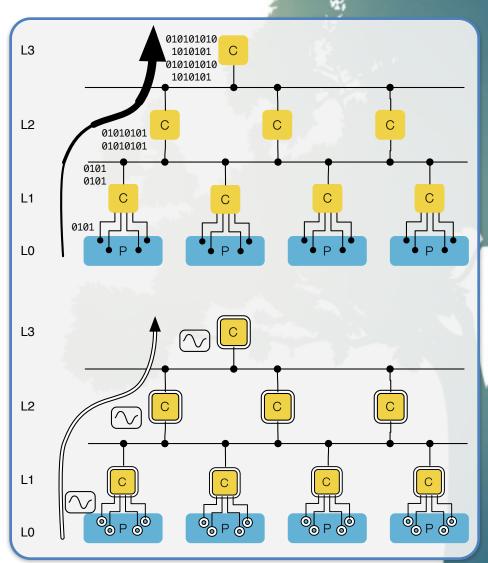
SNELLFACT (SENSOR NETWORKS FOR LARGE SCALE FAULT DIAGNOSIS, CONTROL AND MONITORING)

RICCARDO FERRARI

R.FERRARI@TUDELFT.NL

ORGANIZATION/COMPANY

- DELFT TECHNICAL UNIVERSITY
 - 20,000 students, 3,300 staff
 - 320 PhD theses and 6000 publications per year
 - 19th in the global THE Engineering and Technology rankings in 2015 (was 23rd in 2014)
 - **59 H2020 projects** granted at 31/08/2015
 - 20 as coordinator
 - total **budget** for TUDelft **33.2 MEur**
- DELFT CENTER FOR SYSTEMS AND CONTROL (DCSC)
 - cutting edge research in automatic control
 - robotics, transportation, process control, optics
 - 6 full professors, 3 associates, 6 assistants, 21 postdocs, 40 PhDs
 - Coordinated FP7 project HD-MPC on Hierarchical MPC (2MEur)
- MYSELF
 - 6 years industrial R&D experience in instrumentation and control for the steelmaking sector
 - now joined DCSC as a Postdoctoral Researcher


PROJECT IDEA 1/2

PROBLEM

- Applying plant/site wide advanced diagnosis, monitoring and control is not feasible with current architectures
- All the data coming from lower levels would **flood** higher levels!
- Current trend of adding sensors, availability of Big Data, Industrial Internet, IoT, ..., is worsening this

PROPOSED SOLUTION

- Make sensors smarter and let them preprocess data, in order to represent it in a compressed form, without losing important details but keeping only the ones needed at L1
- Apply the idea to representation of dynamical models as well, and to data exchanged at L1->L3 level
- **Scalable** multi-level/scale **approach**

PROJECT IDEA 2/2

APPLICATIONS

- Large scale monitoring, and advanced modelbased Fault diagnosis and control (such as MPC)
- Model-based plant-wide scheduling optimisation

CHALLENGES

- Making approach work with existing control, monitoring and optimisation hardware and software, limiting the use of additional components
- Synthesizing on-line an overall plant model for higher level tasks (scheduling, optimisation, monitoring) based on compressed representation of lower-level variables and models
- Developing a standardised protocol for communicating and using compressed information

RELEVANT SPIRE COMPONENT, ACTIONS AND CALL

- Component: PROCESS
 - KA 2.3: Process monitoring, control and optimisation
- Call: SPIRE-02-2016 "Plant-wide monitoring and control of data-intensive processes"

EXPECTED IMPACT 1/2

DIRECT RELATION TO CALL TOPIC

- Integration of local control systems into plant-wide optimisation and scheduling
- Collection and evaluation of large amounts of data
- Use of pre-existing commercially available optimisation and scheduling solutions
- Extension of the model based control techniques to plant or site-wide level

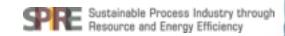
thanks to a **standardised** and **tractable** way of **compressing** lower level **models** and **data**

thanks to the capacity of reducing the complexity of the overall model

INDIRECT RELATION TO CALL TOPIC

- Frameworks taking into account Operator Training
 Systems
- Plat level Life-Cycle management tools
- Delivery of at least one demonstrator

thanks to expertise of industrial partners in supply of complete automation solution, and of tools for Virtual Commissioning, and availability of experimental plant


EXPECTED IMPACT 2/2

RELATION TO SPIRE ROADMAP

- **KA 2.3** is directly addressed, which is a **priority** in current SPIRE phase
- Data is a valuable resource: finding a way to use all available data, in a scalable way, in real-time will lead to increased yield and better equipment utilisation (efficiency increases up to 20% in steel)
- The envisioned plant level fault diagnosis and monitoring applications will lead to longer life and better utilisation of existing (ageing) plants

CROSS-SECTORIALITY

- The idea addresses sensing, communication and control/optimisation issues, and as such can be applied to any process
 - large scale and "slow" processes more suited to demonstrating the idea
- The addition of industrial partners from sectors different than steel is necessary

EXISTING PROJECT CONSORTIUM

CURRENT PARTNERS

- TU Delft / Delft Center for Systems and Control
 - Academia, expertise in control systems
 - Coordinated HD-MPC FP7 project

- Industry, supplier of instrumentation and complete automation solutions for steelmaking
- Part of Danieli group (supplier of turn-key plants)
 - Took part into CESAR ARTEMIS-JU FP7 project

PROSPECTIVE PARTNERS

 Expression of interests from leading academic partners, including an European institution from the top ten in global THE Engineering and Technology rankings

LOOKING FOR PARTNERS

INDUSTRIAL PARTNERS

- One, or better two partners from other SPIRE sectors, willing to cooperate in the definition of requirements and of testbeds, and willing to host a demonstrator
 - especially in the **Chemical** sector

OPEN TO OTHER PARTNERS

- Academia, with interest in novel control paradigms for large scale systems
- Companies (also SMEs) with experience in automation hw and sw related to the present idea willing to cooperate on the definition of standard protocols

CONTACT DETAILS

CONTACT

Riccardo Ferrari

Postdoctoral Researcher

TU Delft / Delft Center for Systems and Control

3mE Faculty

Mekelweg 2, 2628 CD Delft

Room: 34 C-2-340

T +31 (0)15 27 81529

E r.ferrari@TUDelft.nl

I www.dcsc.tudelft.nl/~riccardoferrar

